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Abstract. Let F be a non-Archimedean local field of characteristic 0 and

G = SL(n, F ). Let (π,W ) be an irreducible smooth self-dual representation

G. The space W of π carries a non-degenerate G-invariant bilinear form ( , )
which is unique up to scaling. The form ( , ) is easily seen to be symmetric

or skew-symmetric and we set ε(π) = ±1 accordingly. In this article, we show

that ε(π) = 1 when π is an Iwahori spherical representation of G.

1. Introduction

Let G be a group and (π, V ) be an irreducible complex representation of G.
Suppose that π ' π∨ (π∨ is the dual or contragredient representation). In the
presence of Schur’s lemma, it is easy to see that there exists a non-degenerate G-
invariant bilinear form on V which is unique up to scalars, and consequently is
either symmetric or skew-symmetric. Accordingly, we set

ε(π) =

¨
1 if the form is symmetric,

−1 if the form is skew-symmetric,

which we call the sign of π. In this paper, we study this sign for a special class of
representations of SL(n, F ).

The sign ε(π) has been well studied for connected compact Lie groups and cer-
tain classes of finite groups of Lie type. If G is a connected compact Lie group,
it is known that the sign can be computed using the dominant weight attached to
the representation π (see [3] pg. 261-264). For finite groups of Lie type, computing
the sign involves tedious conjugacy class computations. We refer to the following
paper of Gow ([5]) where the sign is studied for such groups. In [8], Prasad in-
troduced an elegant idea to compute the sign for a certain class of representations
of finite groups of Lie type. He used this idea to determine the sign for many
classical groups of Lie type, avoiding difficult computations. In recent times, there
has been a lot of interest in studying these signs in the setting of reductive p-adic
groups. In [9], Prasad extended the results of [8] to the case of reductive p-adic
groups and computed the sign of certain classical groups. The disadvantage of his
method is that it works only for representations admitting a Whittaker model. In
[11], Roche and Spallone discuss the relation between twisted sign (see section 1 in
[11]) and the ordinary sign and describe a way of studying the ordinary sign using
the twisted sign. More recently in [10], Prasad and Ramakrishnan have looked at
signs of irreducible self-dual discrete series representations of GLn(D), for D a finite
dimensional p-adic division algebra, and have proved a remarkable formula that re-
lates the signs of these representations and the signs of their Langlands parameters.
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In this paper, we compute ε(π) for any irreducible smooth self-dual representa-
tion of SL(n, F ) with non-trivial vectors fixed under an Iwahori subgroup I. To be
more precise, we prove the following

Theorem 1.1 (Main Theorem). Let G = SL(n, F ) and (π,W ) be an irreducible
smooth self-dual representation of G with non-trivial vectors fixed under an Iwahori
subgroup I. Then ε(π) = 1.

Using the main result (Theorem 4.1) of [1], it follows that ε(π) = 1, if we assume
that the representation π generic. The key idea in this paper is to use the results
of Roche and Spallone ([11]) and reduce the problem to computing the twisted sign
(explained later) of a certain generic representation of a Levi subgroup of G.

The paper is organized as follows. In section 2, we introduce the notion of
twisted and ordinary signs attached to the representation π. In section 3, we recall
the results which we need in the proof of the main theorem. In the final section
(section 4), we prove the main theorem.

2. Some preliminaries on signs

In this section, we briefly discuss the notion of twisted and ordinary signs asso-
ciated to representations.

Let F be a non-Archimedean local field and G be the group of F -points of a
connected reductive algebraic group. Let (π,W ) be a smooth irreducible complex
representation of G. We write (π∨,W∨) for the smooth dual or contragredient of
(π,W ) and 〈 , 〉 for the canonical non-degenerate G-invariant pairing on W ×W∨
(given by evaluation). Let θ be a continuous automorphism of G of order at most
two. Let (πθ,W ) be the θ-twist of π defined by

πθ(g)w = π(θ(g))w.

Suppose that πθ ' π∨. Let s : (πθ,W )→ (π∨,W∨) be an isomorphism. The map
s can be used to define a bilinear form on W as follows:

(w1, w2) = 〈w1, s(w2)〉, ∀w1, w2 ∈W.

It is easy to see that ( , ) is a non-degenerate form on W that satisfies the following
invariance property

(2.1) (π(g)w1, π
θ(g)w2) = (w1, w2), ∀w1, w2 ∈W.

Let ( , )∗ be a new bilinear form on W defined by

(w1, w2)∗ = (w2, w1)

Clearly, this form is again non-degenerate and G-invariant in the sense of (2.1).
It follows from Schur’s Lemma that

(w1, w2)∗ = c(w1, w2)

for some non-zero scalar c. A simple computation shows that c ∈ {±1}. Indeed,

(w1, w2) = (w2, w1)∗ = c(w2, w1) = c(w1, w2)∗ = c2(w1, w2).

We set c = εθ(π) and call it the twisted sign of π. It clearly depends only on the
equivalence class of π. If θ is the trivial automorphism of G, we simply write ε(π)
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instead of ε1(π) and call it the ordinary sign. In sum, the form ( , ) is symmetric
or skew-symmetric and the sign εθ(π) determines its type.

2.1. Let θ be an automorphism of G of order at most 2 and suppose that πθ ' π∨.
Consider the automorphism θ′ of G defined by

θ′ = Int(h) ◦ θ

for some h ∈ G, where Int(h) denotes the inner automorphism g → hgh−1 of G. In

this situation, it is clear that πθ
′ ' π∨. A simple computation shows that

(2.2) εθ′(π) = εθ(π)ωπ(θhh)

where ωπ is the central character. For specific details of this computation, we refer
the reader to 1.2.1 in [11].

3. Some results we need

In this section, we recall some results used in the proof of the main result of this
paper.

3.1. Restriction of representations to subgroups. We recall some results
about restricting an irreducible representation of GL(n, F ) to SL(n, F ). For a more
comprehensive treatment of these results, we refer the reader to [13].

Theorem 3.1 (Tadić). Let G̃ = GL(n, F ) and G = SL(n, F ). The following are
satisfied:

a) Let τ̃ be an irreducible smooth representation of G̃. Then τ̃ |G is a finite
direct sum of irreducible smooth representations of G, each occurring with
multiplicity one. (Theorem 1.2, Lemma 2.1 in [13])

b) Given an irreducible smooth representation τ of G, there exists an irre-

ducible smooth representation τ̃ of G̃ such that τ is isomorphic to a sub
representation of τ̃ |G. (Proposition 2.2 in [13])

c) If τ1 and τ2 are two irreducible smooth representations of G̃ such that they
share an irreducible component τ on restriction to G, then there exists a
character χ of G̃ trivial on G such that τ1⊗χ ' τ2. (Corollary 2.5 in [13])

Remark 3.2. Let P = (n1, . . . , nk) be a partition of n. Take M̃ to be the block

diagonal subgroup of G̃ corresponding to the partition P, and M to be the corre-
sponding subgroup in G. The above results also apply in this situation.

3.2. Unramified principal series and representations with Iwahori fixed
vectors. We state an important characterization of representations with non-zero
vectors fixed under an Iwahori subgroup due to Borel and Casselman. We refer the
reader to ([2], [4]) for a proof.

Throughout this section, we let G be the group of F -points of a connected re-
ductive algebraic group defined and split over F . We write T for a maximal F -split
torus in G. We also fix a Borel subgroup B defined over F such that B ⊃ T and
write U for the unipotent radical of B. Given a smooth representation (ρ,W ) of
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T , we write IndGB ρ for the resulting parabolically induced representation.

Theorem 3.3 (Borel-Casselman). Let (π,W ) be any irreducible smooth represen-
tation of G. Then the following assertions are equivalent.

(i) There are non-zero vectors in W invariant under I.

(ii) There exists some unramified character µ of T such that π imbeds as a sub

representation of IndGB µ.

3.3. Compact approximation of Whittaker models. We continue with the
same notaion as in section 3.2 above. We let ψ denote a non-degenerate character
of U . For ` ∈ Z, Rodier constructs a sequence (K`, ψ`) of compact open subgroups
K` and characters ψ` of K` such that the following are satisfied.

(i) K` converges to U and
(ii) ψ`|K`∩U = ψ|K`∩U

We refer the reader to ( [12], section III, pg. 155) for the construction of (K`, ψ`)
and a more detailed account of his results.

We fix an integer m large enough and call the pair (Km, ψm) as the compact
approximation of (U,ψ). To simplify notation, we write (K,ψK) for the compact
approximation (Km, ψm). We state an important result of Rodier which we need
in the proof of the main theorem.

Theorem 3.4 (Rodier). Let π be an irreducible smooth representation of G and ψ
be a non-degenerate character of U . There then exists a compact open subgroup K
of G and a character ψK of K such that

dimC HomK(π, ψK) = dimC HomU (π, ψ).

Therefore, if π is generic, dimC HomK(π, ψK) = 1.

3.4. Reduction to Tempered case. Throughout this section, we use the same
notation and terminology as in [11]. In [11], Roche and Spallone reduce the problem
of computing the θ-twisted sign to the case of tempered representations. We briefly
recall their method below. For further details, we refer the reader to sections §3, §4
of [11].

Let θ be an involutory automorphism of G and suppose that πθ ' π∨. Let
(P, τ, ν) be the triple associated to π via the Langlands’ classification. Suppose
that P has Levi decomposition P = MN . Under certain assumptions on the
involution θ, they apply Casselman’s pairing to show that εθ(π) = εθ(πN ), where
πN is the Jacquet module of π. Using πθ ' π∨ and the fact that τ occurs with
multiplicity one as a composition factor of πN , they prove the following

Theorem 3.5 (Roche-Spallone). Let π be an irreducible smooth representation of
G such that πθ ' π∨. Suppose the Langlands’ classification attaches the triple
(P, τ, ν) to π. Then τθ ' τ∨ and εθ(π) = εθ(τ).
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4. Main Theorem

Throughout this section, we set G = SL(n, F ) and G̃ = GL(n, F ). We write

Z (respectively Z̃) for the center of G (respectively G̃), I (respectively Ĩ) for the

Iwahori subgroup in G (respectively G̃) and O for the ring of integers in F . We
write T for a maximal F -split torus in G and T (O) for the O-points of T .

Let w0 be the element with −1’s and 1’s alternating on the anti-diagonal and
zeros elsewhere. It is clear that w2

0 ∈ Z. Let 1G be the trivial automorphism of G.
Define an automorphism θ′ : G→ G as θ′(g) = Int(w0) ◦ 1G. Since π is self-dual, it

is clear that πθ
′ ' π∨. We first observe that

(4.1) εθ′(π) = ε(π).

From (2.2), it is enough to show that ωπ(w2
0) = 1. We record the result in the

following

Lemma 4.1. Let w0 be as above. Then ωπ(w2
0) = 1.

Proof. It is clear that ωπ(w2
0) = 1 for n odd. We will prove that ωπ(w2

0) = 1
for n even. Since π has non-trivial I fixed vectors, it follows from Theorem3.3
that there exists an unramified character µ of T such that π ↪→ IndGB µ. Let

(ρ,E) be an irreducible subrepresentation of IndGB µ that is isomorphic to π. Let
x ∈ Z, f ∈ E, g ∈ G. Clearly,

(4.2) (ρ(x)f)(g) = f(gx) = f(xg) = µ(x)f(g)

On the other hand,

(4.3) (ρ(x)f)(g) = ωρ(x)f(g)

From ( 4.2) and ( 4.3) it follows that ωρ(x) = µ(x) = ωπ(x). Since w2
0 = −1 ∈ T (O)

and µ is an unramified character, it follows that ωπ(w2
0) = µ(−1) = 1.

�

Let (P, τ, ν) be the triple associated to π via the Langlands’ classification. We
let M and N denote the Levi component and the unipotent radical of the parabolic
subgroup P . Before we proceed further, we observe that the automorphism θ′

satisfies the hypotheses needed in order to apply Casselman’s pairing as stated in
§3 of [11]. To be more precise, we have

Lemma 4.2. The involution θ′ satisfies the following conditions

(i) θ′ is an automorphism of G as an algebraic group.
(ii) θ′ preserves T so that θ|T is an involutory automorphism of the F -split

torus T and
(iii) θ′ maps N to the opposite N̄ .

Proof. (i) and (ii) are clearly satisfied. For (iii), Since π ↪→ indGP (τν), it follows (by

taking duals) that π∨ is a quotient of indGP (τ∨ν−1). In other words, we have

(4.4) π∨ ↪→ indGP̄ (τ∨ν−1).

Since π ' πθ′ ' π∨, it follows that

(4.5) π∨ ↪→ indGθ′(P )(τ
θ′νθ

′
).

From (4.4) and (4.5), and the uniqueness of the Langlands’ classification, it follows

that P̄ = θ′(P ) and τθ
′ ' τ∨. In particular, we have θ′(N) = N̄ . �
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From Lemma 4.2 and Theorem 3.5, it follows that

(4.6) εθ′(π) = εθ′(τ).

We let W denote the space of τ . Throughout we write IM = I ∩M . Before we
continue, we observe that τ has nontrivial IM fixed vectors. We record the result
in the following lemma:

Lemma 4.3. The representation τ has non-trivial IM fixed vectors.

Proof. Since π ↪→ indGP (τν) and πI 6= 0, it follows that (πN )IM 6= 0. Since τν
occurs as a composition factor of πN , it follows that (τν)IM 6= 0 (refer Lemma
4.7 and Lemma 4.8 in [2]). Now using the fact that IM is compact and ν is a
(continuous) character of M taking positive real values, it is clear that ν|IM = 1
and τ IM 6= 0. �

Since (τ,W) is an irreducible tempered representation of M , it is also generic

(see [6], [7]). Let M̃ be the corresponding subgroup in G̃ such that M̃ ∩ G = M .
By Theorem 3.1, it follows that there exists an irreducible representation (τ̃ ,V) of

M̃ such that τ̃ |M is a finite direct sum of irreducible representations (τi,Wi) of M ,
each occurring with multiplicity one and contains the representation τ . To be more
precise, we have

τ̃ |M =
mM
i=1

τi

where τi are distinct irreducible representations of M and τ1 ' τ . Consider the
representation (τ̃θ

′
)∨. This is again an irreducible representation of M̃ which con-

tains τ with multiplicity one on restriction to M . From Theorem 3.1, it follows
that there exists a character χ of M̃ trivial on M such that

(4.7) (τ̃θ
′
)∨ ' τ̃ ⊗ χ.

Let t ∈ HomM̃ ((τ̃θ
′
)∨, τ̃ ⊗ χ) be an isomorphism. From (4.7), it is easy to see

that there is a non-degenerate form [ , ] : V × V → C satisfying

(4.8) [(τ̃ ⊗ χ)(g)v1, τ̃
θ′(g)v2] = [v1, v2]

where [v1, v2] = 〈v1, t(v2)〉. Indeed, for g ∈ M̃, v1, v2 ∈ V, we have

[(τ̃ ⊗ χ)(g)v1, τ̃
θ′(g)v2] = 〈(τ̃ ⊗ χ)(g)v1, t(τ̃(θ′(g))v2)〉

= t(τ̃(θ′(g))v2)((τ̃ ⊗ χ)(g)v1)

= χ−1(θ′(g))(τ̃θ
′
)∨(θ′(g))t(v2)((τ̃ ⊗ χ)(g)v1)

= χ−1(θ′(g))t(v2)(τ̃θ
′
(θ′(g−1)))((τ̃ ⊗ χ)(g)v1)

= χ−1(θ′(g))χ(g)t(v2)(v1)

= [v1, v2].

The form [ , ] is unique up to scalars and is easily seen to be symmetric or skew-
symmetric as before, i.e.,

[v1, v2] = εθ′(τ̃)[v2, v1]

where εθ′(τ̃) ∈ {±1}.
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Let [ , ] : V×V −→ C be the non-degenerate bilinear form on V(obtained above).
Suppose that [ , ]

��
W1×Wj

= 0, for all j = 2, 3, · · · , k. Then it is easy to see that

[ , ]
��
W1×W1

is non-degenerate and satisfies the invariance condition

(4.9) [τ̃(g)w1, τ̃
θ′(g)w′1] = [w1, w

′
1]

where w1, w
′
1 ∈W1, g ∈M . From this it is easy to see that

(4.10) εθ′(τ̃) = εθ′(τ).

Proof of (4.10) follows from a slight modification of Lemma 4.14, Lemma 4.15
in [1]. We also note that the representation τ̃ is generic. This again follows from
from the simple observation that HomU (τ̃ , ψ) contains HomU (τ, ψ)( 6= 0) where ψ
is a non-degenerate character of the unipotent radical U of M . Before we proceed
further, we note that the representation τ̃ can be chosen in such a way that it has
non-trivial vectors fixed under ĨM̃ . This follows by replacing G, G̃ with M , M̃ in
Lemma 4.11 and Theorem 4.15 in [1].

Suppose M̃ ' GL(n1, F )× · · · ×GL(nk, F ). Write

w0 =

2
6664

0 0 . . . 0 w1

0 0 . . . w2 0
...

... . .
. ...

...
wk 0 . . . 0 0

3
7775 ,

where each wi is an ni × ni matrix for i = 1, 2, . . . , k. Let g = (g1, . . . , gk) ∈ M̃ .

Since θ′(M̃) = M̃ , it follows that θ′(g) = h for some h = (h1, . . . , hk) ∈ M̃ . In fact,
for 1 ≤ i ≤ k, we have hi = wk+1−i(gk+1−i)w

−1
k+1−i. Let η be an automorphism of

G defined by η(g) = xgx−1 where

x =

2
6664
w1 0 . . . 0
0 w2 . . . 0
...

...
. . .

...
0 0 . . . wk

3
7775 ∈ M̃.

Let α be the automorphism of G given by α = η ◦ θ′. The automorphism α has
the property that it interchanges the blocks gi and gk+1−i of g for each 1 ≤ i ≤ k.
Since η is an inner automorphism and θ′(x)x = 1, we have

(4.11) εα(τ̃) = εθ′(τ̃).

It is enough to consider the following types of M̃ :

M̃ =

¨
GL(p, F )×GL(p, F )

GL(p, F )×GL(m,F )×GL(p, F )

We first consider the case when M̃ ' GL(p, F ) × GL(p, F ). Since (τ̃ ,V) is an

irreducible generic representation of M̃ , we have τ̃ ' ρ1 ⊗ ρ2, where (ρ1,V1) and
(ρ2,V2) are irreducible generic representations of GL(p, F ). Since τ̃ ' ρ1 ⊗ ρ2, we
have an isomorphism φ : V1 ⊗ V2 → V satisfying

φ(ρ1(g1)v1 ⊗ ρ2(g2)v2) = τ̃(g)(φ(v1 ⊗ v2)).
7



where g = (g1, g2). We use the map φ to transfer the form on V to a form on V1⊗V2

in a natural way. To be more precise, we define [ , ]′ : (V1⊗V2)× (V1⊗V2)→ C as

[v1 ⊗ v2, w1 ⊗ w2]′ := [φ(v1 ⊗ v2), φ(w1 ⊗ w2)].

Replacing the automorphism θ′ with α in (4.9), it is easy to see that it can be
reformulated in terms of ρ1 ⊗ ρ2 as

(4.12) [v1 ⊗ v2, w1 ⊗ w2]′ = χ(g)[ρ1(g1)v1 ⊗ ρ2(g2)v2, ρ1(g2)w1 ⊗ ρ2(g1)w2]′.

Indeed, we have

[v1 ⊗ v2, w1 ⊗ w2]′ = [φ(v1 ⊗ v2), φ(w1 ⊗ w2)]

= [(τ̃ ⊗ χ)(g)(φ(v1 ⊗ v2)), τ̃α(g)(φ(w1 ⊗ w2))]

= χ(g)[τ̃(g)(φ(v1 ⊗ v2)), τ̃α(g)(φ(w1 ⊗ w2))]

= χ(g)[φ((ρ1 ⊗ ρ2)(g)(v1 ⊗ v2)), φ((ρ1 ⊗ ρ2)(α(g))(w1 ⊗ w2))]

= χ(g)[ρ1(g1)v1 ⊗ ρ2(g2)v2, ρ1(g2)w1 ⊗ ρ2(g1)w2]′

We know that ρ1 and ρ2 are irreducible representations of GL(p, F ). Since the
center of GL(p, F ) is connected, it follows from Theorem 4.4 in [1], that there exists
an element s ∈ T (O) (T is a maximal F -split torus in GL(p, F )) such that α(s) = −1
for each simple root α. Using Rodier’s compact approximation (see Theorem 3.4)
and genericity of the representations ρ1 and ρ2, we get pairs (Km, ψm) and (Kn, ψn)
such that ρ1|Km ⊃ ψm and ρ2|Kn ⊃ ψn with multiplicity one. Choosing v0, w0 such
that v0 ∈ space of ψm and w0 ∈ space of ψn and s0 = (s, s), it follows that

(4.13) εα(τ̃) = χ(s0)ωτ̃ (s2
0).

Indeed,

χ(s0)[ρ1(s)v0 ⊗ ρ2(s)w0, ρ1(s2)v0 ⊗ ρ2(s2)w0]′ =

χ(s0)ωρ1(s2)ωρ2(s2)[ρ1(s)v0 ⊗ ρ2(s)w0, v0 ⊗ w0]′ =

[v0 ⊗ w0, ρ1(s)v0 ⊗ ρ2(s)w0]′.

Let ĨM̃ = Ĩ∩M̃ be the Iwahori subgroup in M̃ . Since α(ĨM̃ ) = ĨM̃ and τ̃ ĨM̃ 6= 0,

it follows that (τ̃α)∨ has non-trivial ĨM̃ fixed vectors. Now proceeding in a similar
fashion as in Theorem 4.19 in [1], it follows that the character χ is unramified. In

particular, χ(s0) = 1. Since s0 ∈ T̃ (O) and τ̃ ĨM̃ 6= 0, it follows that ωτ̃ (s2
0) = 1.

The result follows.

If M̃ = GL(p, F ) × GL(m,F ) × GL(p, F ), then τ̃ ' ρ1 ⊗ ρ2 ⊗ ρ3 where ρ1, ρ3

are irreducible representations of GL(p, F ) and ρ2 is an irreducible representation
of GL(m,F ). Since the automorphism α interchanges the blocks in a specific way,
(in our case, α interchanges the GL(p, F ) blocks and fixes the GL(m,F ) block)

choosing s0 = (s1, s2, s1) ∈ M̃ with α(s1) = α(s2) = −1 and proceeding as in the
previous case, the result follows.
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